

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

Nombre de la materia: Laboratorio de Microcontroladores II

Clave: IA3201-T

No. de horas/semana: 4

Total de horas: 64

No. de créditos: 8

Prerrequisitos: Laboratorio de Microcontroladores (IA3200-T)

Objetivo general: En este laboratorio, el alumno aprenderá el manejo y configuracion de perifericos especializados de un microcontrolador especifico y aplicaciones para la resolución de problemas.

Programa sintético

1. Introducción al Microcontrolador PIC18F4550	8 hrs.
2. Periféricos especializados del microcontrolador PIC18F4550	20 hrs.
3. Periféricos de comunicación del PIC18F4550	30 hrs.
4. Examen 2	2 hrs.
5. Examen 3 (Proyecto Final)	2 hrs.
	otal: 62 hrs.

Programa desarrollado

- 1. Introducción al Microcontrolador PIC18F4550 8 hrs.
 - 1.1 Introducción a la materia de microcontroladores II .- Explicación general del panorama de la materia así como su interacción con la materia microcontroladores I
 - 1.2 Repaso
 - 1.3 Repaso del ambiente y la programación del microcontrolador PIC18F4550.
 - 1.4 Práctica 1 Repaso del entorno de desarrollo de microchip MPLAB
- 2. Periféricos especializados del microcontrolador PIC18F4550 _______ 20 hrs.
 - 2.1 El convertidor Analógico Digital
 - 2.2 Práctica 2 El convertidor analógico/digital Implementación de un voltímetro u otro equipo de medicion de variables analogicas
 - 2.3 Manejo de Interrupciones
 - 2.4 Práctica 3 Manejo de Interrupciones del Timer El objetivo de esta práctica es presentar las interrupciones del Timer implementando un frecuencimetro o un generador de tonos.
 - 2.5 Práctica 4 Manejo de Interrupciones del Puerto B El objetivo de esta práctica es presentar las interrupciones del puerto B de preferencia para la implementacion de un teclado matricial.
 - 2.6 Examen 1

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

3. Pariféricos de comunicación del PIC18E4550
3. Periféricos de comunicación del PIC18F4550
3.2 Práctica 5 El puerto de comunicación serie asíncrono esta práctica describe el funcionamiento de este periférico logrando la comunicicación serie entre una PC y el microcontrolador.
3.3 Práctica 6 El puerto de comunicación serie asíncrono con interrupción esta práctica describe el funcionamiento de este periférico con interrupción serial.
3.4 Programación basada en estados y multitarea.
3.5 Práctica 7 Ejemplo de programación basado en estados y multitarea.
3.6 El puerto de comunicación USB
3.7 Práctica 8 El Puerto de comunicación USB. Uso de la biblioteca USB de microchip, para el uso del puerto USB en modo CDC, para la emulación de un puerto serial.
3.8 El Puerto de comunicación MSSP.
3.9 El puerto de comunicación IIC Modos de comunicación, velocidad de operación, ventajas y usos de este tipo de comunicación.
3.10 Práctica 9 Modo IIC. En este modo de operación del puerto MSSP, se presenta la conexión de alguno de los siguientes dispositivos: memorias RAM, EEPROM, reloj de tiempo real, sensores de temperatura, convertidores D/A,etc.
3.11 El puerto de comunicación SPI, Modos de comunicación, velocidad de operación, ventajas y usos de este tipo de comunicación, expansión de puertos paralelos con esta comunicación.
3.12 Práctica 10 Modo SPI. En esta práctica se conectará una memoria tipo flash, una memoria EEPROM, una pantalla LCD, convertidores D/A u otro microcontrolador para transferir o desplegar información utilizando el protocolo de comunicación SPI.
3.13 Practica 11 Modo SPI como expansión de Puertos Paralelos. Se muestra la utilización de este modo de comunicación para la expansión de puertos paralelos.
3.14 El modulo ECCP. Descripción y uso del modulo ECCP. Este módulo es una mejora del módulo CCP en especial para el control de motores.
3.15 Práctica 12 el módulo ECCP para el modulo de Control de Motores. En esta práctica se conecta un pequeño motor de CD en el modulo de control de motores.
4. Examen 2 2 hrs.
4.1 Aplicaciones del microcontrolador.
5. Examen 3 (Proyecto Final)2 hrs.

Bibliografía básica:

5.1

1. PICmicro End-Range MCU Family Reference Manual Microchip Technology Inc. 1997

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA

- 2. MPLAB C18 C Compiler Getting Started Microchip Technology Inc. 2008
- 3. MPLAB C18 C Compiler user's Guide Microchip Technology Inc. 2008
- 4. MPLAB C18 C Compiler Configuration Settings Addendum Microchip Technology Inc. 1997

Bibliografía complementaria:

- 1.-Microcontroladores PIC, Diseño Práctico de Aplicaciones Tomos I y II José Ma. Angulo Usátegui, Ignacio Angulo Martínez Mc. Graw Hill, 2ª edición, 1999
- 2. PIC18F4550 Data Sheet Microchip Technology Inc. 1999
- 3. Microprocesadores, Teoría y Práctica Hugo G- García Guerra LIMUSA-NORIEGA editores
- Design with microcontrollers
 John B. Peatman
 Mc. Graw Hill

Metodologías de enseñanza-aprendizaje:

Metodologías de evaluación:

Revisores:

M.I. Salvador Ramírez Zavala Ing. Félix Jiménez Pérez

Notas: Se propuso en septiembre de 2009